

An Energy Efficiency Workshop & Exposition

Palm Springs, California

Please be courteous to our speakers

Turn off all cell phones

and

Set pagers to vibrate

An Energy Efficiency Workshop & Exposition

Palm Springs, California

Financing or Appropriations: Which Is Best-Value for Implementing Federal Energy Conservation Projects?

Patrick J. Hughes
John Shonder
Oak Ridge National Laboratory

Session 8, Financing Track

Differences

- □ ESPCs: pay for interest, M&V, etc.
- But it often takes longer to put an ECM in place using appropriations
 - > Agencies wait for Congressional appropriations
 - Agency competitive processes to allocate funds to sites cause delays
 - > Inefficient equipment remains in service during delays
- Comparison requires careful analysis

Objective of Study

- Develop a representative energy conservation project
- Determine the life cycle cost of implementing with alternative processes
 - Appropriations (based on experience at a DOE site (Y-12) using IHEM program funds)
 - ESPC (based on experience with FEMP Super ESPC)

Representative Project

- Used database of 71 FEMP Super ESPC projects awarded thru FY01 to determine:
 - > Ave. project investment (\$3,263,000)
 - Ave. 1st year guaranteed energy & related O&M savings (\$354,000/year)
 - Assume same savings for appropriated project
 - Average performance period prices (O&M, R&R,etc.)
 - ESPC: use the average (\$49,700/year)
 - Appropriations: use average less M&V costs (\$36,400/year)

ESPC process steps

- Kickoff meeting
- Initial proposal
- Notice of intent to award (NOITA)
 - Agency reimburses DOE \$30k for Project Facilitator
- □ Detailed energy survey/30% design
- Final proposal
- Award
- Design completion/construction
- Acceptance start of performance period

Modeling the ESPC process

1. Average time to DO award	15 months
Average design/construction period	12 months
Average implementation price	\$3,263,000
4. Average financed amount	\$2,990,000
5. Average pre-performance-period payment	\$509,000
6. Average financing procurement price	\$236,000
7. Average project interest rate	8.07%
8. Average delivery order term	206 months
Average first-year guaranteed cost savings	\$354,000
10. Average escalation rate for guaranteed annual cost savings	1.87%
11. Average first-year M&V price	\$13,300
12. Average escalation rate for annual M&V price	3.78%
13. Average first-year performance-period price, excluding M&V	\$36,400
 Average escalation rate for annual performance-period price, excluding M&V 	3.95%
15. Average percentage of guaranteed cost savings paid to ESCO	98%
16. Average escalation rate for annual contractor payment	1.87%

- Used a database of appropriationsfunded projects at one DOE site (Y-12) to determine:
 - Steps required to obtain funding
 - Average delays
 - Costs associated with each step in the process per \$ of project that ever got built

Appropriations process steps

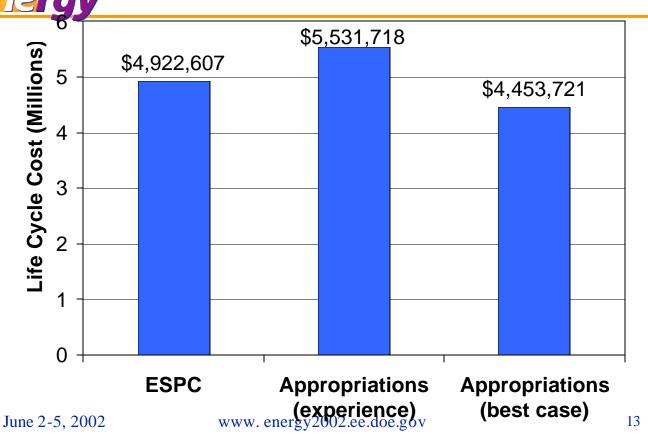
- Preliminary assessment of ECM
- Develop/submit request for formal survey/feasibility study funds
- If funding received: perform survey and feasibility study (30% design completion to support next request)
- Develop/submit request for design and construction funds
- If funds received, complete design and bid package, solicit bids, select contractor, construct project
- Accept project (and begin energy savings).

Modeling the appropriations process

- Data available for Y-12 projects receiving some type of funding FY94/95
 - Cost of feasibility study
 - Date feasibility study began
 - Date feasibility study ended
 - Cost of design and construction
 - Date construction eventually began
 - Date construction ended

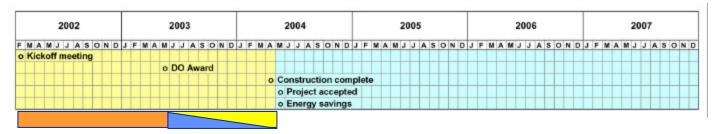
Modeling the appropriations process

- Ave. 63 months to get a project installed
- □ \$1,251,000 received for feasibility studies (39 ECMs, \$27.5 million design/construction cost)
 - > \$4,996,000 received to fund design/construction (12 of the 39 ECMs)
 - Cost of feasibility studies for constructed ECMs was \$195,000 -- 4% of their construction costs
 - But in reality, feasibility studies cost 25% of design and construction costs

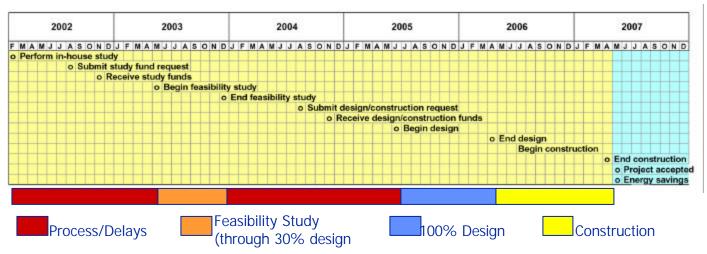


"Best case" appropriations

- All feasibility studies lead to built projects, so study costs are 4% of design/construction costs, not 25%
- Delay to acceptance is 27 months (same as in Super ESPC), rather than 63 months



Results of the study



Observation – in real world ESPC is faster

Super ESPC Process*

Appropriations Process**

^{*}Based on averages from the 71 projects awarded through the end of FY 2001.

^{**}Averages based on records of 23 energy-project studies at one agency site during a two-year period that led to requests for \$27.5 million in design/construction funding and ultimately \$5 million in built projects.

Additional observations

- Appropriations delays keep inefficient equipment in service longer
- PV of energy/energy related O&M during this delay (\$1.664 million) is about equal to the interest costs in ESPC case (\$1.644 million)
- □ ESPC M&V costs are 3.5% of PV of LCC
- ESPC project facilitator costs are 0.6% of PV of LCC

Conclusions

- Appropriations are best value if:
 - Congress appropriates without delay
 - Agency HQs disburse funds to field without delay
 - > Sites are clairvoyant: all studies lead to built projects
- However, appropriations experience shows:
 - Congress has higher priorities than energy projects
 - Agency HQ processes to allocate funds to sites cause delays
 - High overheads (not all studies lead to built projects)
- □ Experience ? ESPC LCC less than appropriations

Parting thoughts

- Obviously this study is not definitive
 - Does Super ESPC represent all ESPC?
 - Does the DOE experience at Y-12 represent all appropriations?
- However, no definitive study was found concluding appropriations LCC < ESPC either
- Questions:
 - Were the "good old days" really that good?
 - Have we been victims of selective memory?

Next Steps

See the full study at:

http://www.ornl.gov/femp/pdfs/LCC-ESPCvsAppropriations-DRAFT.pdf

Forward all comments to:

- John Shonder
- **865-574-2015**
- shonderja@ornl.gov

FEMP is expanding the study

If you have organized (any?) records of past appropriated projects please let John know

FEMP contacts

- Project Financing Team Lead
 - > Tatiana Strajnic
 - > 202-586-9230
 - tatiana.strajnic@ee.doe.gov